

The Impact of the Peanut Genomics Initiative on Cultivar Development

National Peanut Buying Point Association February 2024

Peanut Genome Initiative

6 million

•Growers

• Shellers

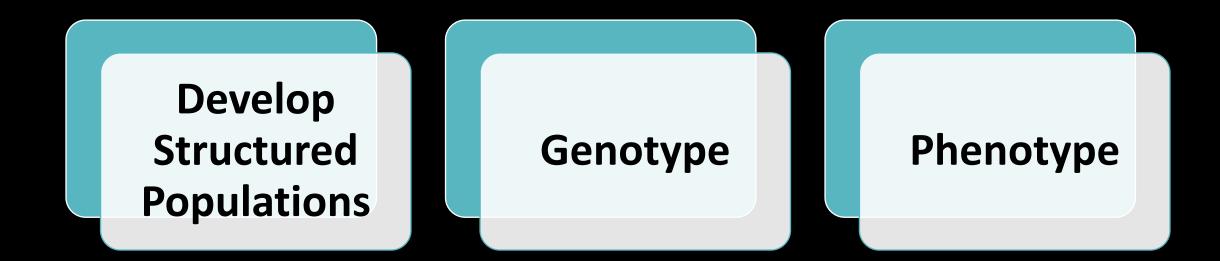
Manufacturers

Development of Molecular Markers for MAS

MAS ≠ GMO

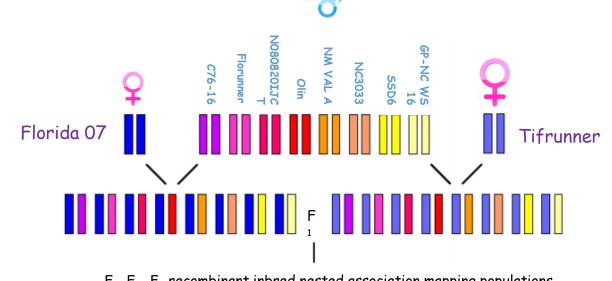
Some Early History

Outline


A Few Examples of Success

Impact on Our Breeding Program

Early History


Primary Goal: Develop MAS methodologies that lead to improved cultivars.

Approach:

CAP = NAM (nested association mapping population)

- CAP stands for "coordinated agricultural project" USDA NIFA 2007
- Led by Steve Knapp and breeders from most peanut growing states
 - To facilitate mapping economically important traits
 - Enhancing marker assisted breeding

 $F_2,\,F_3 ... F_6$ recombinant inbred nested association mapping populations

Attributes for Parents of 16 RIL Populations

Parent	Common or Unique Parent	Market Class	Oleic Acid	TSWV	Early Leaf Spot	Late Leaf Spot	White Mold	Sclerotinina	CBR
Tifrunner	Common	Runner	L	R	MR	MR	S	U	U
Florida-07	Common	Runner	Н	R	S	S	MR	U	U
N08082oIJCT	Unique	Virginia	Н	MR	MS	U	U	MR	MR
C76-16	Unique	Runner	L	MR	U	U	U	U	U
NC3033	Unique	Virginia	L	HS	MR	HS	R	U	HR
NM Valencia A	Unique	Valencia	L	S	S	S	HS	HS	U
OLin	Unique	Spanish	Н	MS	S	S	U	R	U
SSD6	Unique	Exotic	L	HR	U	U	U	U	U
SPT 06-6	Unique	Exotic	L	U	HR	HR	U	U	U
Florunner	Unique	Runner	L	HS	S	S	S	S	S

Nested association mapping population size

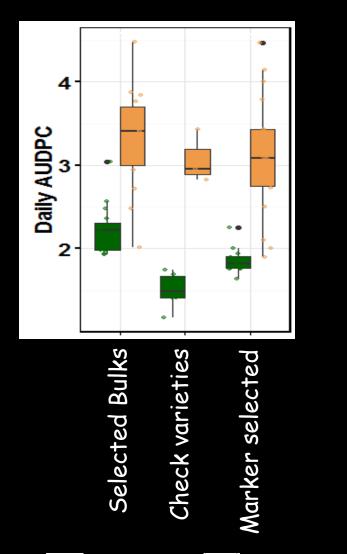
	Tifrunner		Florida-07
NM Valencia A	76		270
Olin	161		190
N080820IJCT	398		247
SSD6	427		66
NC3033	375		394
Florunner	376		460
GP-NC WS16	394		381
C76-16	389		266
Total		4870	

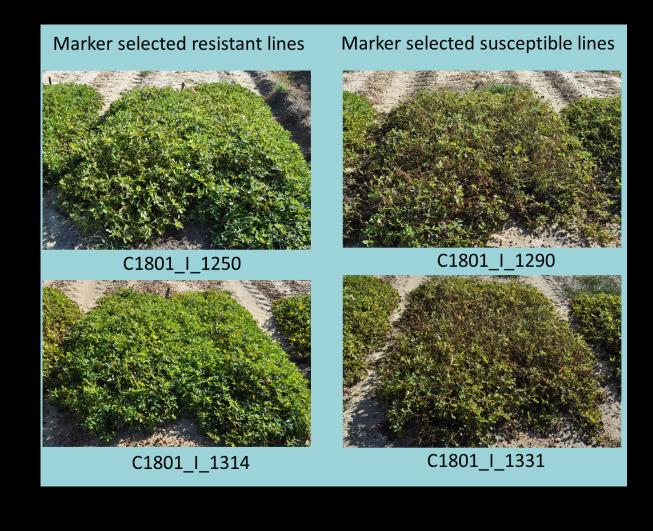
Phenotyping Efforts

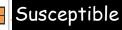
- C. Corley Holbrook
- Tim Brenneman
- Mark Burow
- Chris Butts
- Steven Cannon
- Carolina Chavarro
- Ye Chu
- Josh Clevenger
- Renje Cui
- Albert Culbreath

- Baozhu Guo
- Thomas G. Isleib
- Scott Jackson
- Craig Kvien
- Marshall Lamb
- Samuele Lamon
- Peggy Ozias-Akins
- Sara Beth Pelham
- Tom Sinclair
- Barry Tillman

Examples of Success


Mapping population for LLS resistance




Non-sprayed field of C1801 population quantitatively segregating for LLS resistance

Major QTL's for resistance to early and late leaf spot were identified on chromosome 3 and 5.

Late leaf spot resistance QTL validation with marker selected RIL Isleib's advancement

QTL-seq-Late Leaf Spot

Validated

Implemented in breeding program

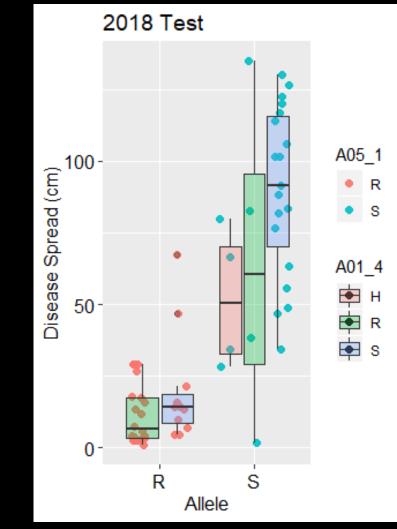
Release of TifGP-5 and TifGP-6 Chu et al. 2022

Release of TifGP-3 and TifGP-4 Holbrook et al. 2022

White Mold C1799 =Tifrunner x NC 3033

Tifton, GA

Marianna, FL


QTL - seq

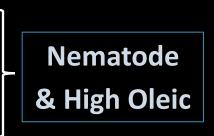
QTL Seq.

Resistant QTLs identified on chromosome 1 and 5.

Used to select resistant and susceptible RILs.

Using sequencing technology effectively

Susceptible Resistant


Release of TifGP-7 Chu et al. (In Review)

Impact on Our Breeding Program

Use of Marker Assisted Selection in the USDA/UGA Breeding Program

2008 – Tifguard released – Strictly conventional breeding

- 2008 50 Samples for MAS
- 2009 2012 1,000 Samples for MAS
- 2013 4,000 Samples for MAS
- 2014 7,000 Samples for MAS
- 2015 10,000 Samples for MAS
- 2016 10,000 Samples for MAS with additional markers
- 2017 10,000 Samples for MAS Seed Chipping
- 2018 15,000 Samples for MAS Seed Chipping and additional markers.

Resistance to	Resistance to
Nematode	Leaf Spot
Resistance to	Resistance to
White Mold	TSWV
Resistance to	Oleic/Linoleic
Peanut Smut	Ratio

Using MAS for:

Markers Currently in Validation Studies:

Drought Tolerance

Reduced Aflatoxin Contamination

MAS in 2021

16.7K Peanut Tissue Samples 32 SNP Markers for 6 traits

108K Data Points

National Peanut Buying Points Association | 2024 Annual Winter Conference

New Precision Ag Technology in Peanut Production

Simer Virk

Assistant Professor & Extension Precision Ag Specialist University of Georgia @PrecAgEngineer

Peanut Planters

Trends in Peanut Planting

- Peanut seeding rates are considerably higher than other crops (corn and cotton)
- Planting speed is normally slower (3.0 3.5 mph)
- Until recently, most of the planting technology advancements have been focused primarily towards other crops (primarily corn)

Planting Technology

Seed Monitor*

- Population (over or under)
- Seed Singulation (98 100%)

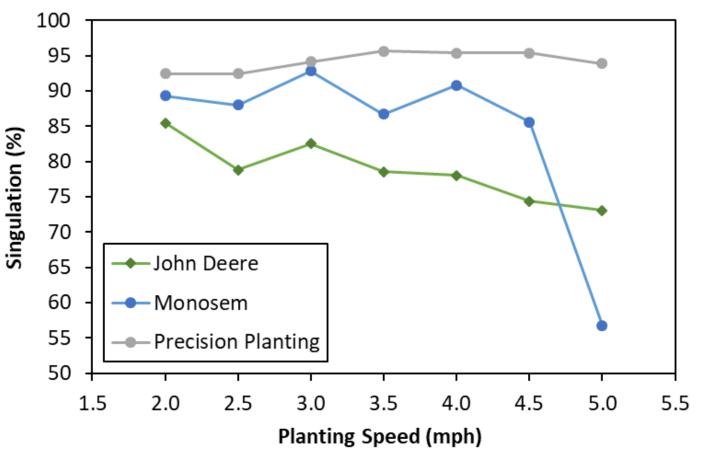
*by-row planting feedback

Improvements in Seed Metering

John Deere

<u>Monosem</u>

Electric Seed Meters



Improved Seed Singulation

Singulation (%) at different speeds (6 seeds/ft)

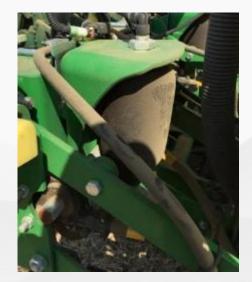
Planting Speed (mph)	John Deere	Monosem	Precision Planting	
2.0	85%	89%	92%	
2.5	79%	88%	92%	
3.0	83%	93%	94%	
3.5	79%	87%	96%	
4.0	78%	91%	95%	
4.5	74%	86%	95%	
5.0	73%	57%	93%	

Seeding Rate - 6 seeds/ft

Peanut Seed Placement

Optimal planter downforce is required for accurate seed placement:

- Seed Depth
- Seed-to-Soil Contact



Downforce Technology Options

Active Downforce Systems

Benefits:

- Enable automatic downforce adjustments as field conditions change
- Improves seed placement in varying field conditions

Advanced Planting Technologies

Controlled Seed Delivery:

Provides controlled seed delivery to the furrow from the seed meter

SmartFirmer:

Provides real-time information on soil properties (moisture, temp and organic matter) during planting

SmartDepth:

Enables real-time seed depth adjustments based on a preset range, soil moisture, or OM

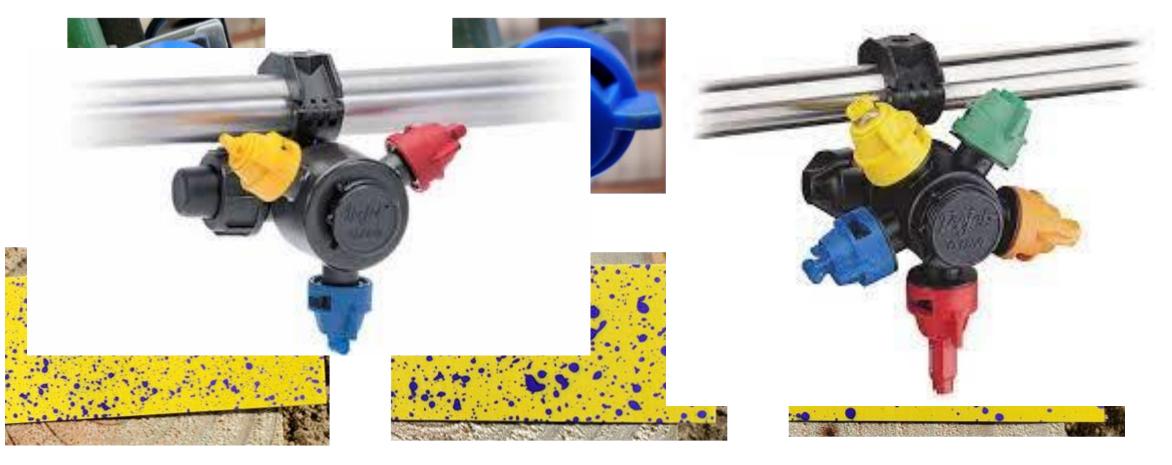
Peanut Sprayers

Without a rate controller

With a rate controller

Trends in Peanut Pesticide Applications

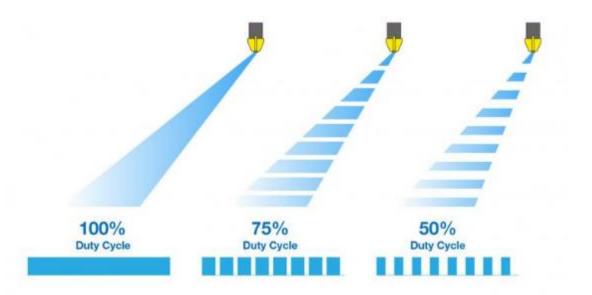
- Lower spray volumes
- Larger droplets/nozzle types
- Increased ground speeds
- Minimal technology on sprayers



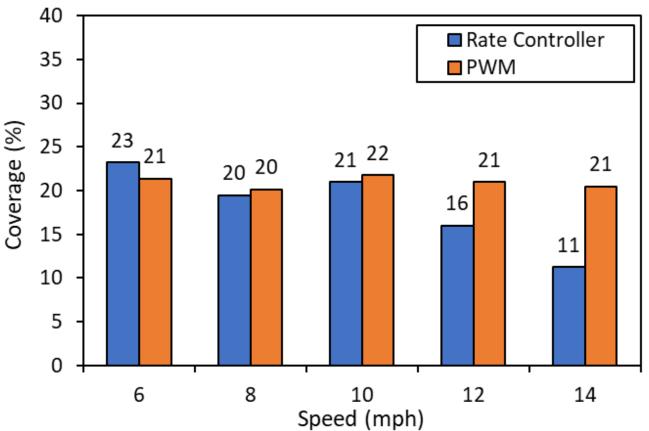
Common Nozzles used for Peanut Pest Management

Standard Flat-Fan (XR)

Air-Induction (AIXR)


Dicamba Tip (TTI)

Pulse-Width Modulation (PWM) Technology

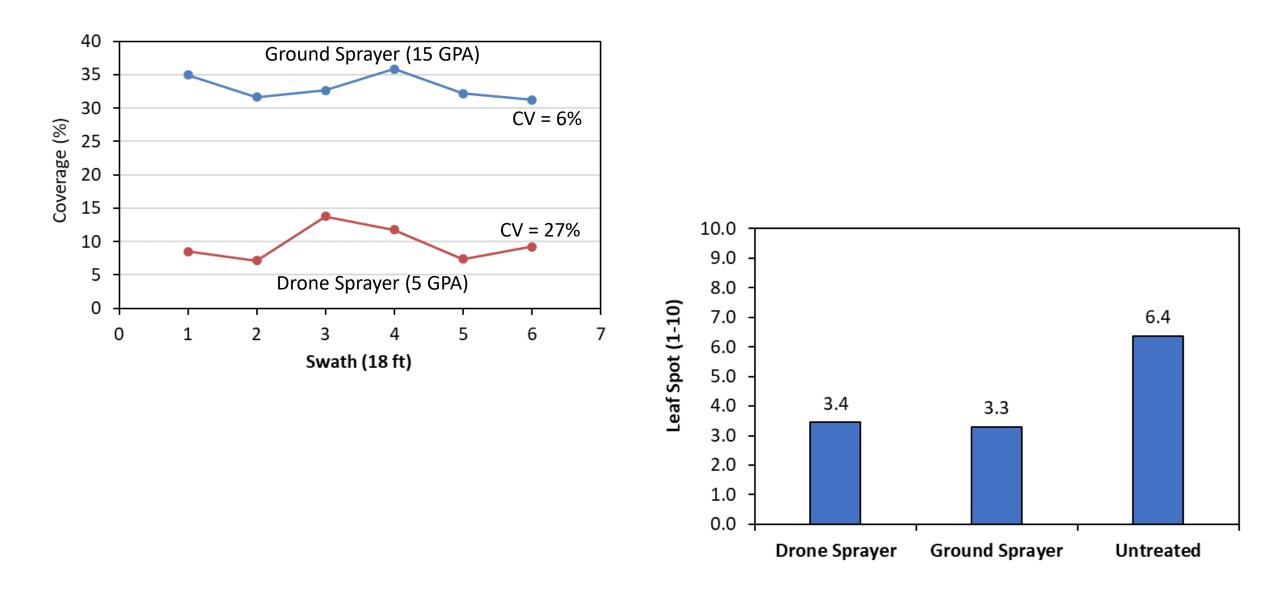


- Constant spray pressure across the boom (droplet size control)
- Flow (rate) changes are accomplished by varying duty cycle

Spray Coverage – Rate Controller vs PWM

Spray Drone Applications

- Spot-spray herbicide applications where it is efficient and economical to treat with a drone sprayer.
- Fungicide applications when a timely fungicide application with a ground sprayer or crop duster is not feasible.
- Awkward acres or small fields fields or parts of the fields that makes applications with ground and/or crop duster challenging.


Spot-Spray Herbicide Applications

Fungicide Applications

Fungicide Applications – Ground Sprayer vs Spray Drone

Thanks!

Simer Virk

Extension Precision Ag Specialist University of Georgia

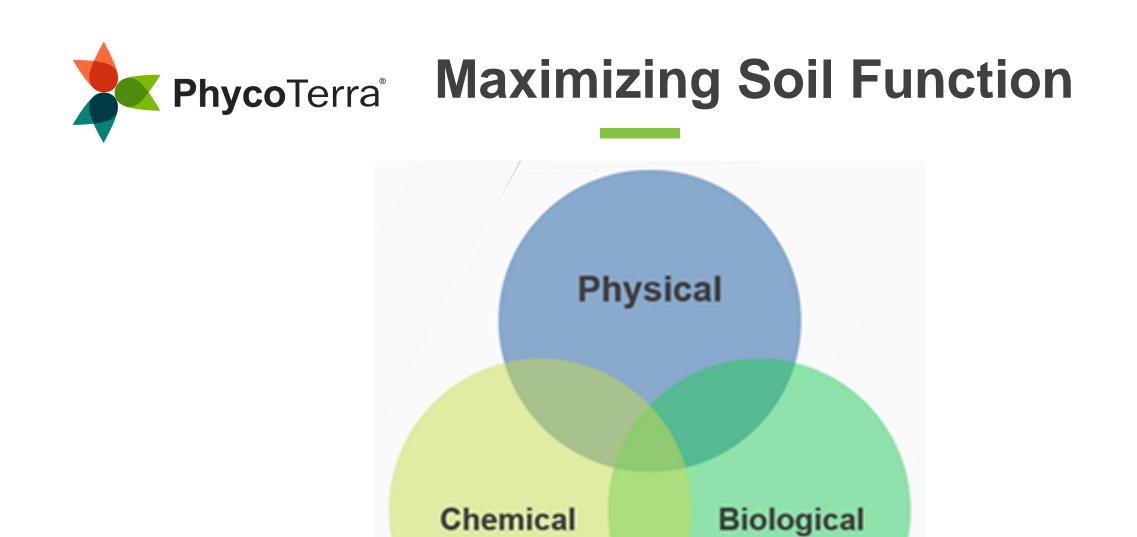
svirk@uga.edu

Website: https://agtechdata.uga.edu/ Twitter: @PrecAgEngineer

A Novel Technology to Improve Soil Function and Peanut Crop Performance

National Peanut Buying Points Assoc. Mtg Savannah, GA February 18, 2024

> Mike Miller Sr. Field Agronomy Manager, CCA Heliae Agriculture



Maximizing Soil Function

- A New Technology for Peanut Production
- Results in the Field

How do you maximize the most valuable asset on your farm?

75% of native microbes (bacteria & fungi) found in soil are dormant. Without a proper food source, your soil cannot maximize nutrient availability & water retention, contributing significantly to crop growth & development. In a single teaspoon of soil you will find 1 billion bacteria & 1 million fungi.

PhycoTerra®

Wake them up with ...

Heliae[®] Agriculture © Heliae Development,

PhycoTerra®

Heliae® Agriculture @ Heliae Development,

BACTERIA

Bacillus species – **bacteria** that helps with pathogen control and nutrient availability for plants; may have plant growth promoting abilities (PGRB).

Pseudomonas species – **bacteria** that helps with pathogen control and nutrient availability for plants (PGRB).

Azospirillium – free-living **bacteria** that helps with N fixation on *non-legumes* (corn, wheat, etc.).

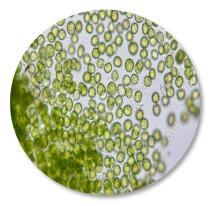
Aspergillus species - bacteria that produce enzymes that break down hard-to-digest plant fibers which frees up nutrients. Members of this genus can also be plant pathogens.

Why wake them up?

FUNGI

Mycorrhizae – a beneficial plant/**fungal** symbiosis that help trees get more water and phosphate.

Trichoderma species – a beneficial **fungus** that helps protect the plants against pathogens.


Yeasts/protein mixes – nutrient delivery source for plants (amino acids, NPK, etc.).

Put a Latent Resource on Your Farm to Work for You!

PhycoTerra[®] What's in this New Technology?

Microalgae

- Single-celled algae
- Microscopic in size
- Complex constituents
- Native soil microbe food

✓ <u>Native</u> <u>Soil</u> Organism

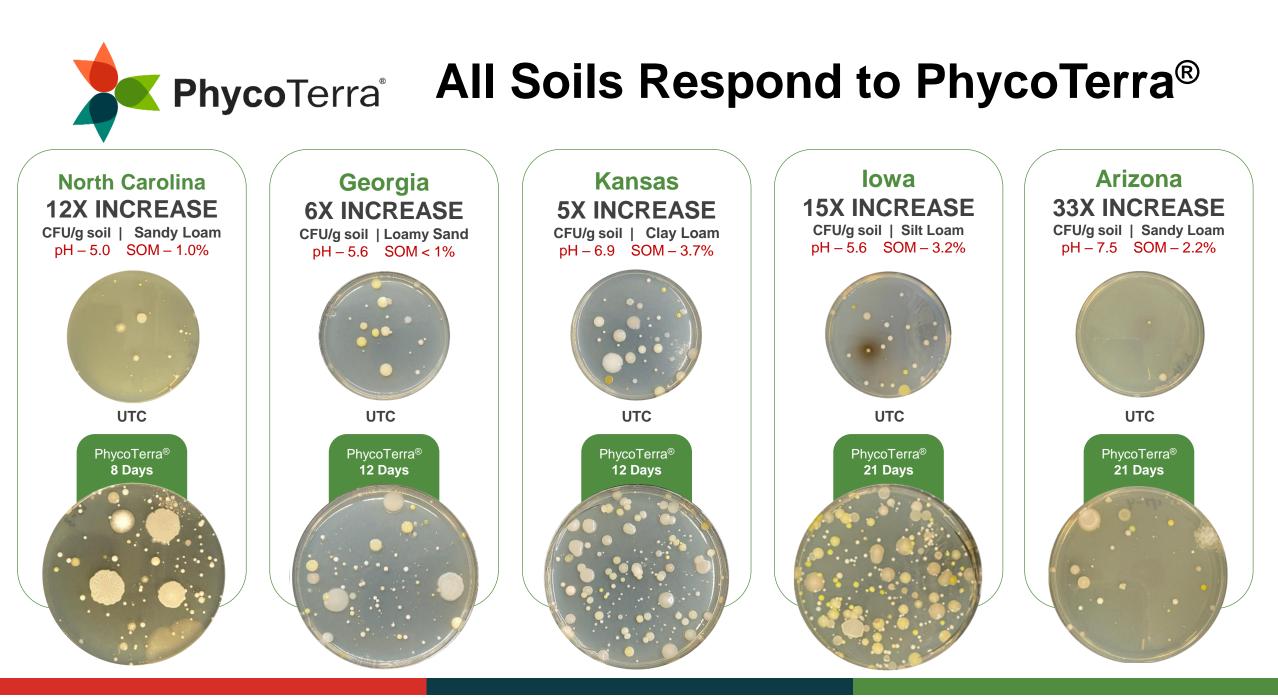
- ✓ <u>Not Live</u> two-year shelf life, no special storage
- ✓ Not a microbial inoculant
- ✓ A diverse and rich <u>"superfood" for native soil microbes</u>
- ✓ **Proprietary** Strain & Isolate
- ✓ **Optimized for crop agriculture** (traditional mutagenesis)

Interested in the Role of Microalgae in Soils and Agriculture?

2022 Frontiers in Environmental Science

< https://www.frontiersin.org/articles/10.3389/fenvs.2022.1035332/full#:~:text=Microalgae%20are%20beneficial%20for%20soil,soil%20structure%20and%20soil%20quality%20(>

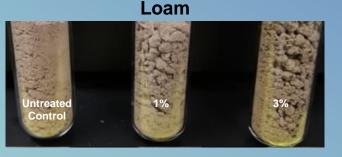
Improves Native Soil Biology and Soil Structure


Secreted Glues

- PhycoTerra[®] provides super food to the microbiome
- PhycoTerra feeds microbes & puts them to work
- An active microbiome improves soil structure, promoting healthy crops

Heliae[®] Agriculture @ Heliae Development,

Typical Ag Soil Limited Microbial Growth Soil agar + PhycoTerra® Excellent <u>Abundance +</u> <u>Diversity</u>



Structure of all Soils Improved with PhycoTerra®

Silty Clay Loam

Loamy Fine Sand

Sandy Loam

Loamy Sand

Fine Sand

Structure changes after 3 biweekly applications

PRODUCT TYPE	CARBON ROLE IN SOIL SYSTEM		
Microbial Food Source	Microbial food, promoter of structure-crop productivity		
Enzymes	Specific reactions in the soil		
Inoculants	Specific living microbial species or communities		
Fulvic Acids	Nutrient retention, plant absorption, and complexation		
Seaweeds & Kelps	Plant growth promoter, stress management		
Humic Acids	Nutrient retention, complexation, structure		
ee	CARBON-BASED PRODUCTS		

Heliae[®] Agriculture @ Heliae Development,

0.3 https://www.ag.ndsu.edu/publications/crops/soil-organic-matter-does-matter/sf1942.pdf

FEATURES

Unique Mode of Action with proven on-farm results

BENEFITS

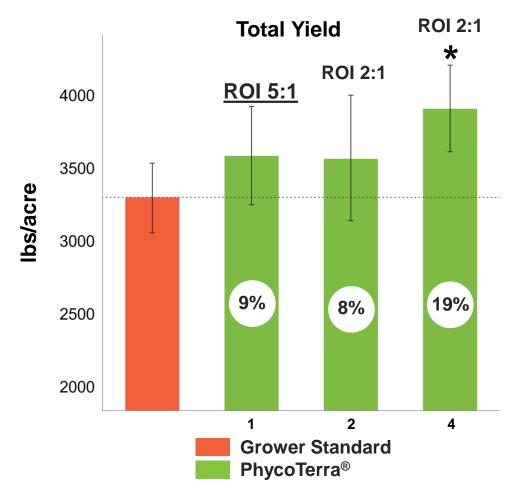
- Optimizes NPK availability
- Improves water holding capacity up to 10%
- Supports abiotic plant stress
- Improves soil aggregation
- Compatible with other crop inputs
- Flexible application: pre-plant, in-furrow, side dress & post-emergence, fertigation
- Exceptional shelf-life, up to 2 years
- Improves yield & ROI
- Increases microbial activity by up to 33x
- Feeds beneficial native microbes with inert microalgae superfood

Product Details

PhycoTerra[®] is NOT live, not a fertilizer, a foreign microbe or a biostimulant.

 Physician's Sol Amendemic Activation by pools of the in- heters, one polytom and he Activate soil microbes

Proprietary, Innovative


Formulation

Heliae[®] Agriculture © Heliae Development,

Application Rate Considerations

Trial Location: Tifton, GA

*Error bars represent 90% Confidence Interval, Significance tested using LSMeans Dunnett (α =0.1)

SOIL TYPE: Sandy Loam

VARIETY:

GA-16HO

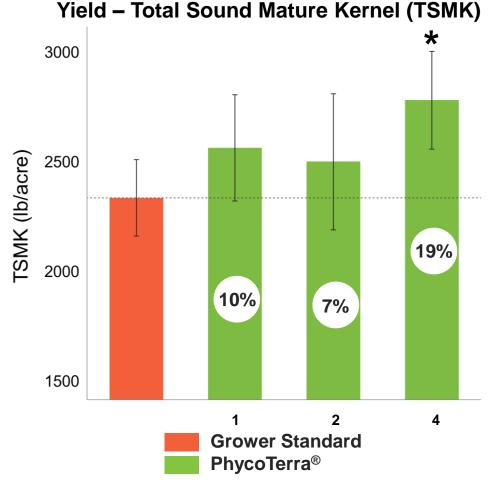
University

TRIAL INFO:

APPLICATION RATE:

1,2 & 4qts/acre

APPLICATION TIMING:


One-time PhycoTerra[®] applied in-furrow at planting

Greater On-Farm Profits *Economic Sustainability*

More Crop with Same Amount of Fertilizer Fertilizer Use Efficiency

More Crop with the Same Amount of Water Water Productivity

Peanut Quality

Trial Location: Tifton, GA

SOIL TYPE: Sandy Loam

VARIETY: GA-16HO

TRIAL INFO: University

APPLICATION RATE: PhycoTerra[®] (1 qt/acre)

APPLICATION TIMING:

PhycoTerra[®] applied in-furrow at planting

Improved Peanut Quality

*Error bars represent 90% Confidence Interval, Significance tested using LSMeans Dunnett (a=0.1)

Heliae® Agriculture © Heliae Development,

- Apply one time in seed-furrow at planting at 1 quart per acre (best ROI for grower)
- - Apply in addition to standard in-furrow
 Bradyrhizobium inoculants
- Neutralize pH of PhycoTerra® to 6.0-6.5 prior to addition of Bradyrhizobium inoculant

Performance *Start with the Ending*

Trial Type	Trial Design	Trial Number	Average Yield Increase (Ib/Ac)	PhycoTerra® ROI	Trial Wins	Win Rate
University	Replicated, Randomized	9	269	5:1	9	100%
Grower Trials	Split Field	16	505	6:1	11	69%
All Trials	Both	25	387	5.5:1	20	80%

PhycoTerra[®] 2020 Commercial Grower Trials

Trial Locations: Georgia

- Split-field design
- PhycoTerra[®] applied in-furrow at planting (1qt/acre)
- 86% trial win rate (6 out of 7 trials)
- 8:1 average ROI
- +362 (Ibs/acre) average yield increase
- +76 (\$/ac) average value increase
- Improved TSMK in 5 of 7 (71%) of trials

Good moisture early, drier than average mid-late season

2020 Grower Trial Example

SOIL TYPE: ROI = 15:1 **APPLICATION RATE:** +558 Lbs/Acre Loamy Sand - Sand PhycoTerra[®] (1qt/ac) 7000 6900 Yield (Ibs/acre) VARIETY: **APPLICATION TIMING:** 6800 **GA-06G** In-furrow at planting 6700 6600 +8.8% 6500 TRIAL TYPE: 6400 Grower trial 6300 **PLANTING/HARVEST INFO:** 6200 5/17/2020 6100 6000 **Growers Standard** PhycoTerra® (1qt/acre) **TSMK** 78% 74%

Heliae® Agriculture © Heliae Development, LLC

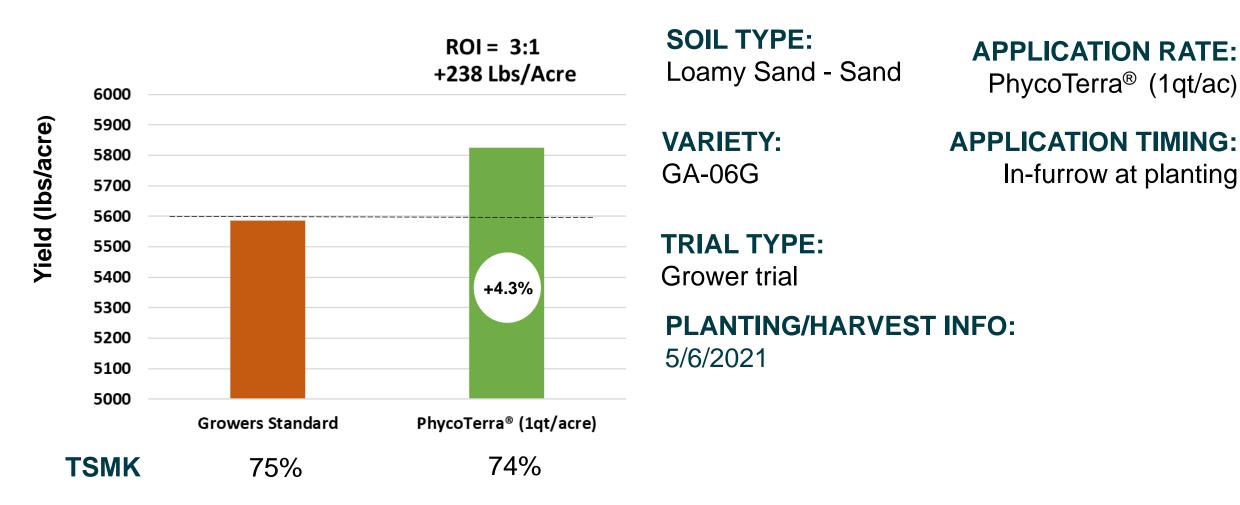
2020 & 2021 – Precipitation A Tale of Opposites

Heliae® Agriculture © Heliae Development, LLC

2021 Grower Trial Summary

Trial Locations: Georgia

- Split field design
- PhycoTerra[®] applied in furrow at planting (1qt/acre)


56% trial win rate (5 of 9 trials) Average ROI was 4:1 +643 (Ibs/Ac) average yield increase +\$50.95 (\$/ac) average value increase Improved TSMK in 2 of 9 (22%) of trials

Standing water, over-saturated soils, soil leaching prevalent

2021 Grower Trial Example

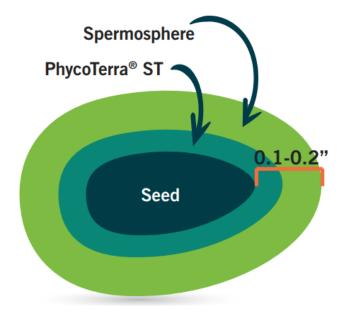
Trial Location: Georgia

Heliae® Agriculture @ Heliae Development,

PhycoTerra[®] 2021 Grower Trial Example

SOIL TYPE: ROI = 3.4:1**APPLICATION RATE:** -53 Lbs/Acre Loamy Sand - Sand PhycoTerra[®] (1qt/ac) 5600 Yield (lbs/acre) VARIETY: **APPLICATION TIMING:** 5500 **GA-06G** In-furrow at planting 5400 5300 **TRIAL TYPE:** Grower trial -1.0% 5200 **PLANTING/HARVEST INFO:** 5100 5/24/202 5000 **Growers Standard** PhycoTerra® (1qt/acre) 78% TSMK 74%

Trial won by quality, not yield


PhycoTerra® Seed Treatment to support germination, early development & yield

SOYBEANS

ROI BU/AC 34:1 +3.5

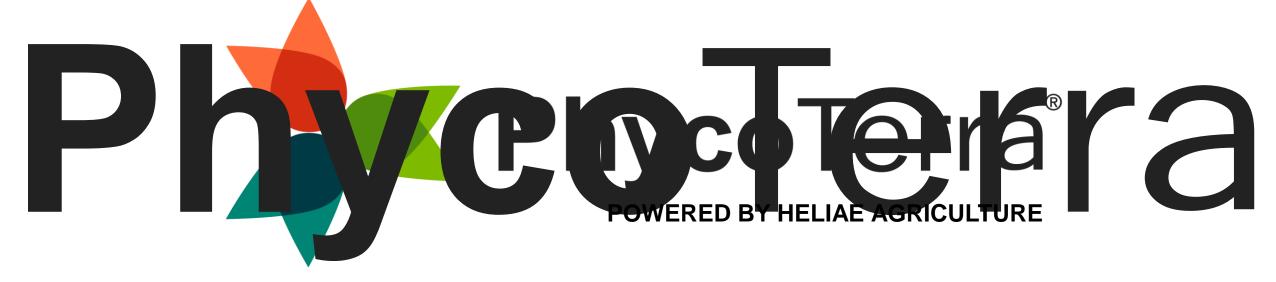
2021 to 2024 (0 acres to ~7mil acres)

PhycoTerra® ST for Peanuts

Heliae® Agriculture © Heliae Development,

Simple application that fits seamlessly into typical farm practices

An untapped new approach to higher farm profits


Improved quality in drier conditions

PhycoTerra[®] improves the utilization of farm resources (soil, fertilizer, water and money)

PhycoTerra® Education & Resources <<u>https://phycoterra.com/resources/#articles</u>>

Darin Blank Regional Sales Manager <u>dblank@heliae.com</u> 812-572-5666

Mike Miller Sr Agronomy Manager, CCA <u>mmiller@heliae.com</u> 831-676-7764 Katy Summers Agronomy Technician <u>ksummers@heliae.com</u> 229-392-0635

National Peanut Crop Update

Scott Monfort Extension Peanut Agronomist 229-392-5457 smonfort@uga.edu

New Communication Effort

All About the Pod Scott Monfort

You can find us on:

- Spotify
- Apple "Podcasts"
- Internet search

gia uics

Impact of Weather Across the Peanut Belt

Weather had a large impact on the peanut productivity in 2023
Many states in the SE had to deal with the weather:
Cool and wet May
Dry and hot in July-August
Cool fall
Disease and Insects
Lower Yield – SE Region, West Region; MS
Good Yield -- Carolinas, AR, MO, North MS
Lower Grades in many states

1. Cool Wet Soils for much of May

Cool Wet Soils + Low Vigor Seed? = Poor Stands

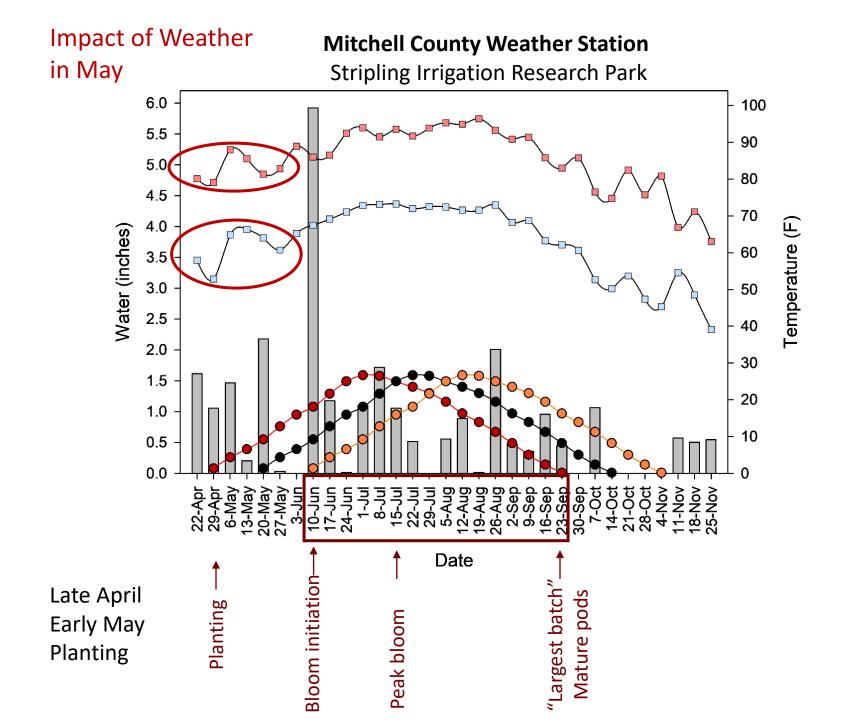
Increase in TSWV over last 3 years

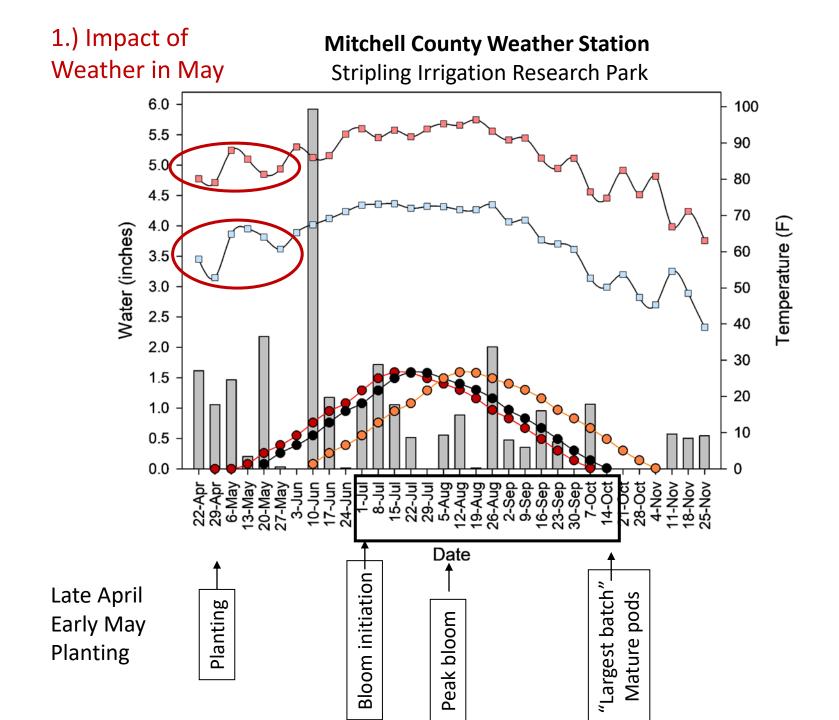
Weather and Seed Quality Impacted Planting and Stand Establishment

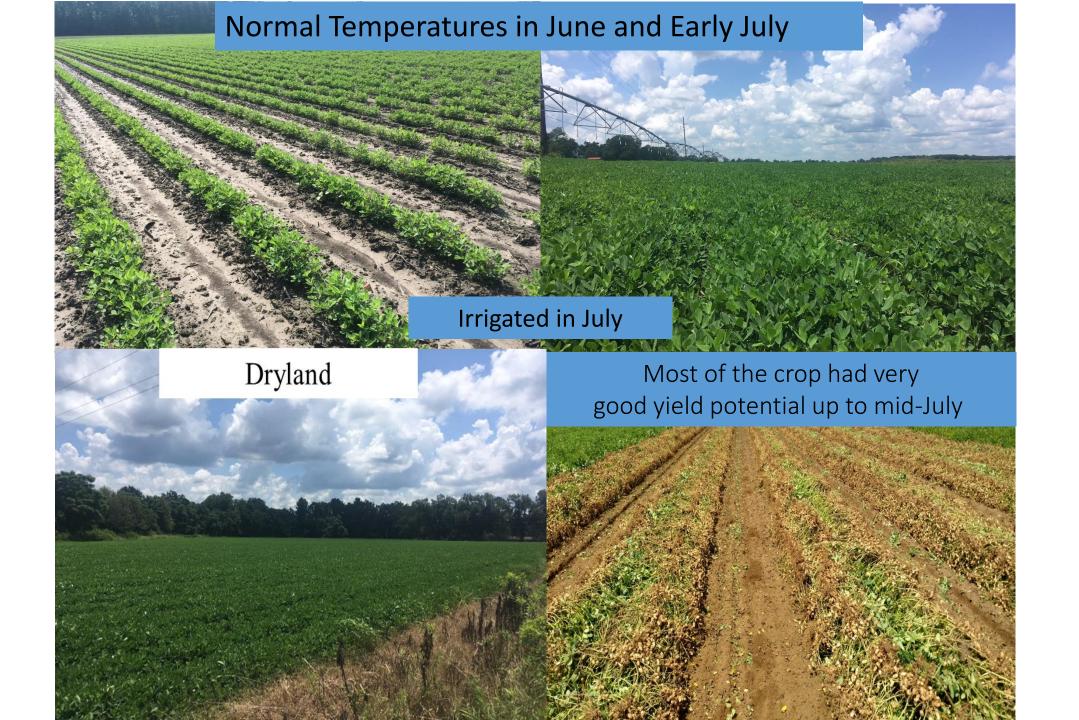
Planting window in GA from late April until June

Last five years : 2018-2022 1/4 of crop planted before May 10th 1/2 planted between May 10th –May 25th 1/4 Planted May 25- June 15th

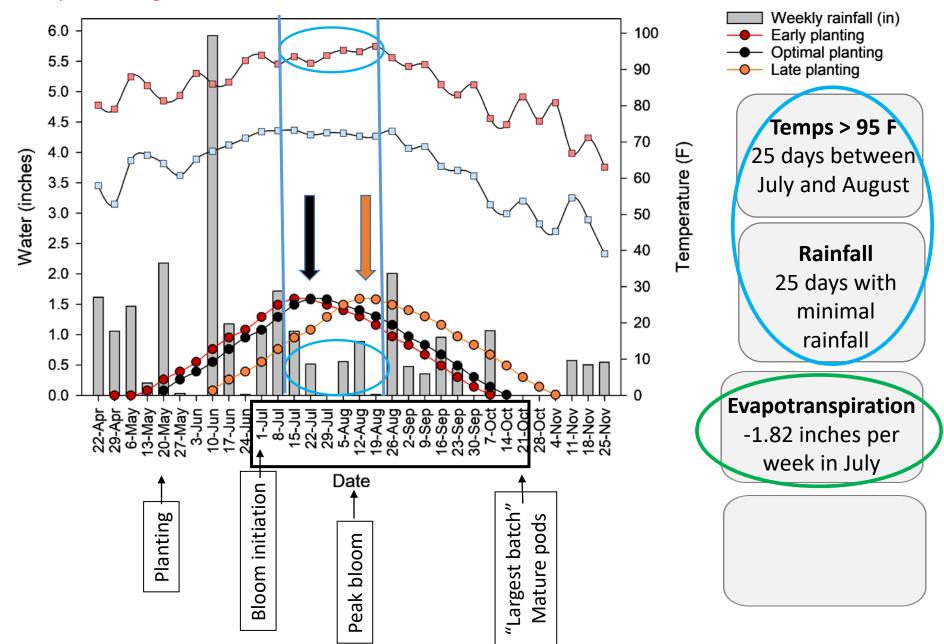
In 2023:


1/4 of crop planted before May 20th
1/2 planted between May 20th –May 30th
1/4 Planted May 30- July 1st


Irrigated Acres: 447,734 (58%) Non-Irrigated : 322,681 (42%)

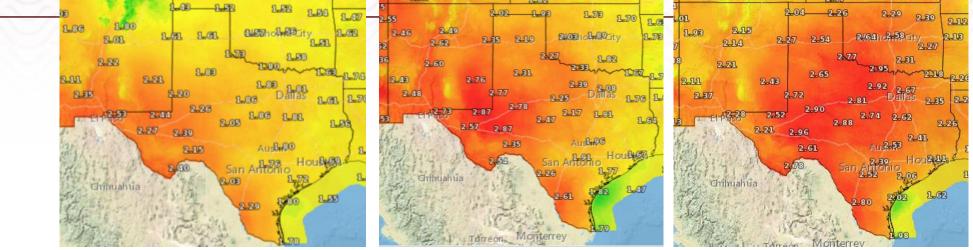


Some States had a Better Start than SE Region

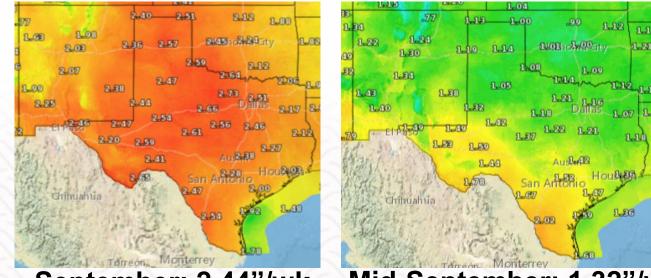


2.) Impact of Weather in July and August

Mitchell County Weather Station Stripling Irrigation Research Park



Although most of the season was relatively wet (over 50+" in some areas), a large part of the growing area did not receive any rain in 2 to 4 weeks causing the crop conditions to go backwards.


Weekly evapotranspiration (inch) for June-Sep 2023 (Source: <u>NWS</u>).

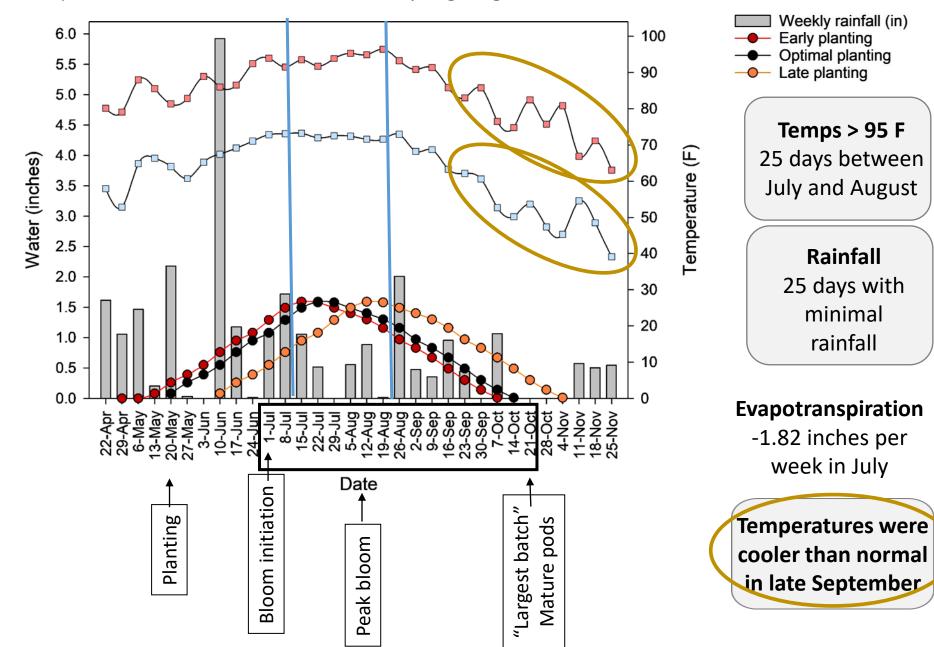
June: 2.20"/wk

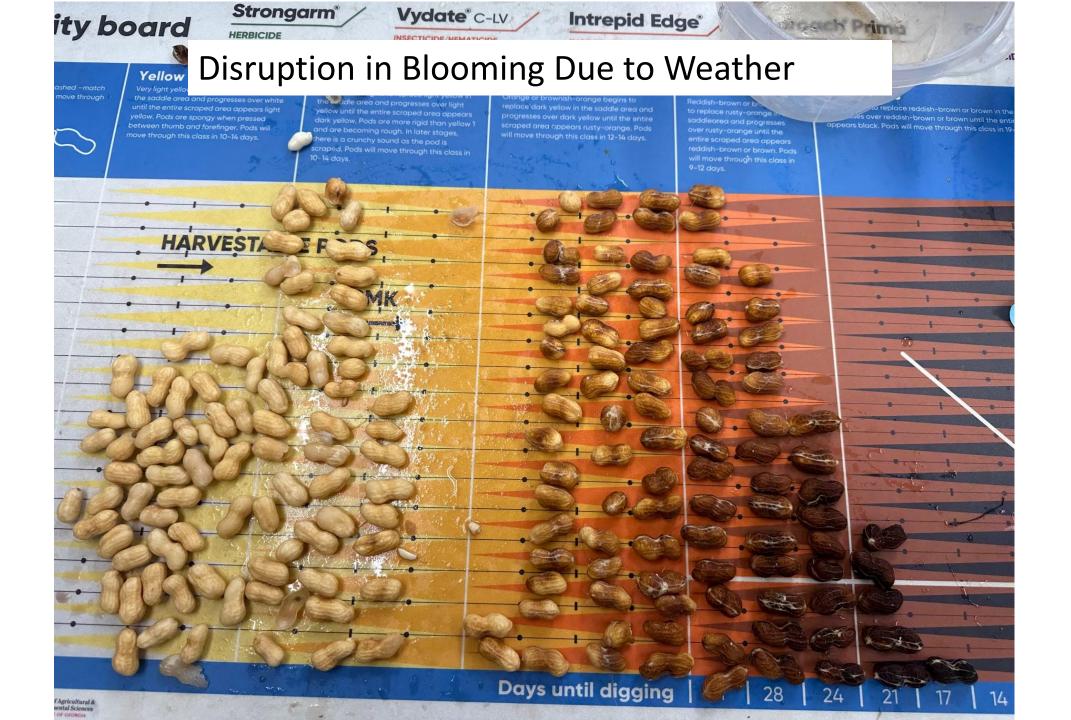
July: 2.77"/wk

August: 2.72"/wk

September: 2.44"/wk

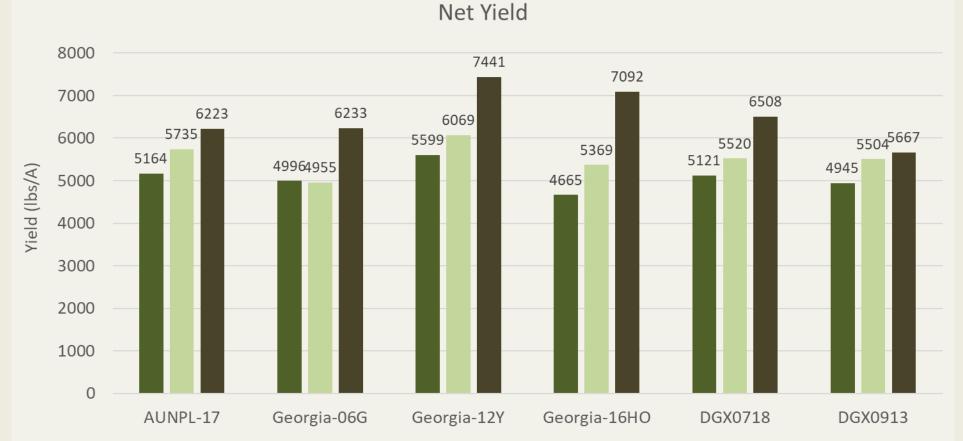
Mid-September: 1.32"/wk



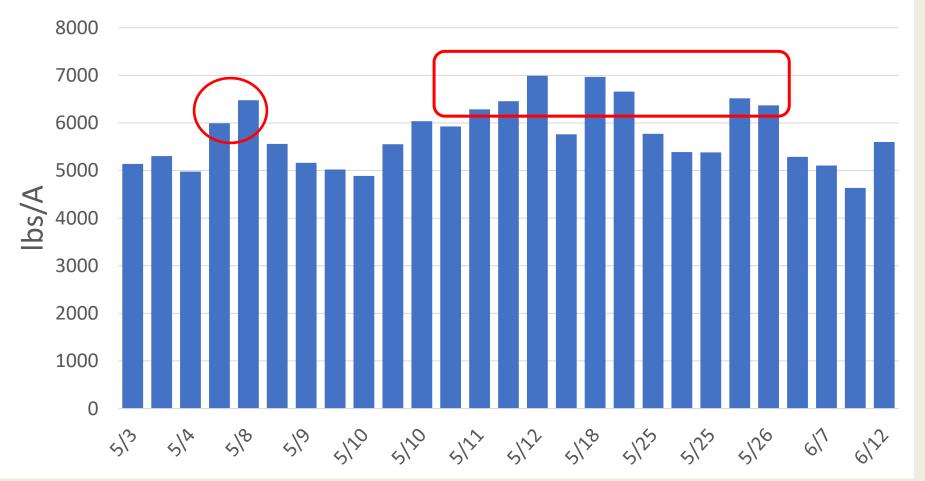

Drought affected peanuts in mid-September (south MS)

3.) Impact of Weather in September and October

Mitchell County Weather Station Stripling Irrigation Research Park



Two Crop Profile Due: Weather in Oklahoma


Dig Date x Variety Trial 2023, May 5th

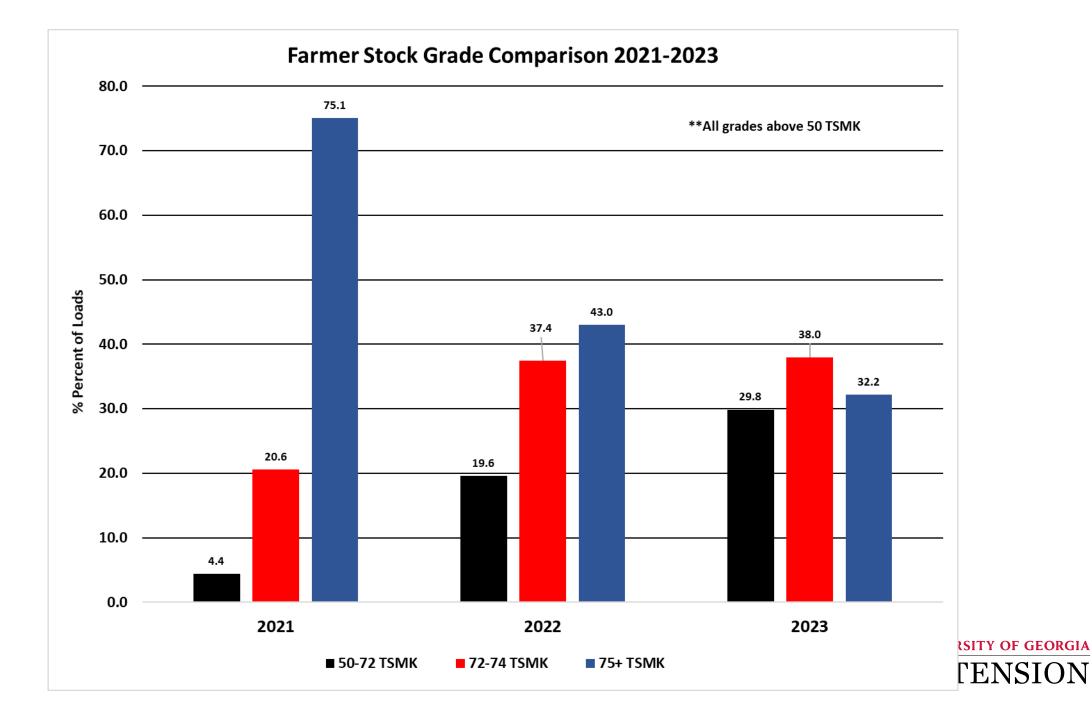
gia ics

Variety

2023 Cultivar Trials -- GA-06G

**Yield were down in Irrigated and Non-irrigated, especially in central and western part of the state

The University of Georgia Extension Peanut Agronomics


North MS, AR, Virginia/Carolinas - Good Yields

2023 Crop Year in Alabama Loads Grades

Over 73% SMKRS

17%

73% SMKRS

9%

Under 73% SMKRS 74%

2024 – Grower Concerns

> Market

Contract availability and price

> Weather

- Drought in West
- Crazy weather in SE

Production

- Irrigation cost
- Increased production cost

Pest issues

- TSWV
- Increasing herbicide resistant weed biotypes
- Disease/Nematodes
- Rootworm/Burrower bug

Bright future but 1-4 years on new varieties

- TiftNV-HG High Yield, RKN, TSWV
- Georgia-22MPR High Yield, RKN, TSWV
- Gerogia-21GR High Yield, TSWV
- FloRun T61- High Yield, TSWV
- FloRun 52N TSWV
- DGX0913 TSWV
- CB7 TSWV, Late Leafspot

In 2024, growers need to:

- Do not change based on 2023
- Understand Germ and Vigor
- Watch weather and plant in good conditions
- TSWV Management
- Use the recommended strategies to minimize Disease, Insects, Weeds, etc

2024 US Peanut Acreage Estimates

State	2023 Planted Acres	2024 ESTIMATED Acres	Diff	Change
AL	173	185	12	+6.9%
AR	34	40	6	+17.6%
GA	770	770 - 820	0-50	0, +6.5%
FL	155	160 -165	5 -10	+3.2, <mark>6.5%</mark>
LA	2	2	0	0
MO	21	21	0	0
MS	18	20	2	+11%
NM	11	11	0	0
ОК	14	19	5	+36%
ТХ	220	220	0	0
NC	122	124	2	+1.6%
SC	74	74	0	0
VA	29	30	1	+3%
	1,643	1,676 (1,731)	+33 (+88)	+2% (<mark>5.4%</mark>)

Acres Will likely increase if:

- Cotton \$ remains low
- Dicamba ????

Thank You Contributors

- Ga Scott Monfort, UGA
- AL Kris Balkcom, AU
- AR Travis Faske, UoA
- FL Barry Tillman, UF
- MS Brendan Zurweller, MS State
- MO Justin Calhoun, UM
- NC David Jordan, NCSU

- NM Naveen Puppala, NMSU
- OK Todd Baughman, OK State
- SC Dan Anco, Clemson
- TX Emi Kimura, TAMU
- TX Shelly Nutt, TPB
- VA Maria Balota, VT

Questions??

Scott Monfort Extension Peanut Agronomist UGA Tifton Campus <u>Smonfort@uga.edu</u> 299-392-5457

Have a Productive Year!!!

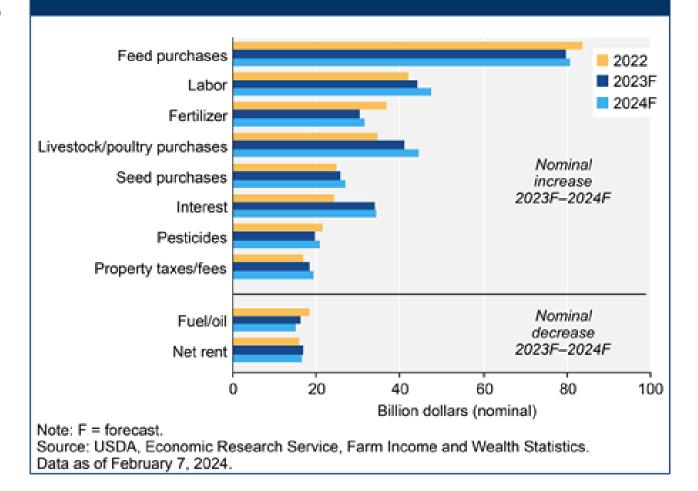
College of Agricultural & Environmental Sciences Department of Crop and Soil Sciences

PEANUT COST OF PRODUCTION AND MAKING A PROFIT

National Peanut Buying Points Association Winter Conference February 18, 2024 Nathan Smith, PhD Extension Economist

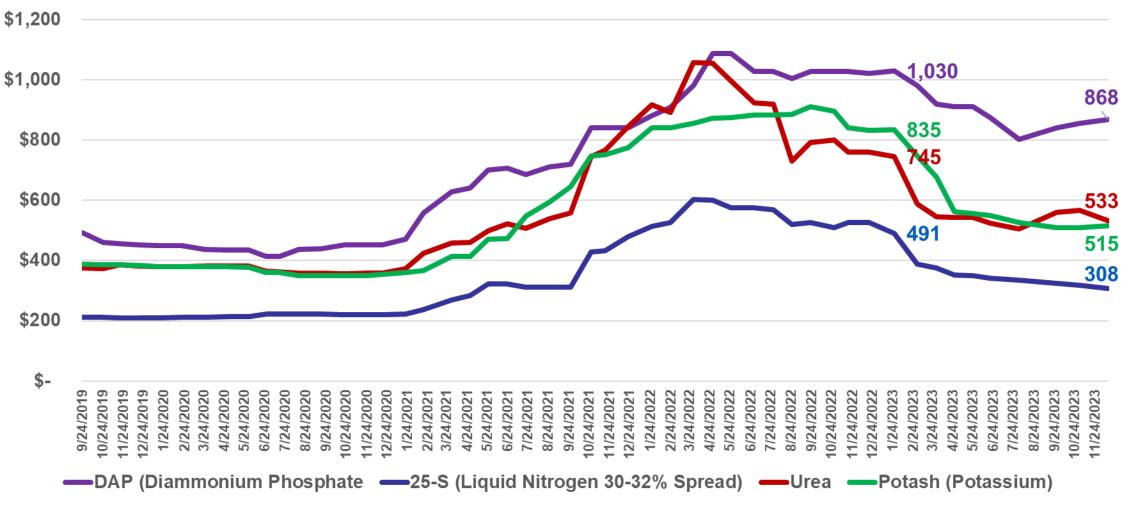
2024 Budget Considerations

- Yield Expectation
 - SC Peanuts averaged a 4,050 lb per acre yield in 2023. (GA average 4,070 lb per acre.)
 - Budgeted yields at 4,000 lbs/ac for dryland and 5,000 lbs/ac for irrigated. (UGA 3,400 lbs/ for dryland and 4,700 lbs/a for irrigated.)
- Budgeted seed price as same last year.
- Chemical inputs, some adjusted down and some left same.



2024 Budget Considerations

- Diesel fuel price down 17.5% from this time last year.
- Fertilizer down from this time last year:


Urea	-28%
25-S	-37%
DAP	-16%
Potash	-38%
Lime	-2.5%

Selected U.S. farm production expenses, 2022–2024F

SC Fertilizer Prices Per Ton

Source: South Carolina Dept of Ag-USDA Market News, Columbia, SC 803-737-4491. www.ams.usda.gov/mnreports/CO_GR210.txt

2023 Projected Peanut Production

	Planted Acres	Harvested Acres	Yield	Production
	1,000) acres	lbs/ac	Tons
AL	175	171	2,810	240,255
AR	35	34	5,200	98,600
FL	160	152	3,320	252,320
GA	775	770	4,070	1,566,950
MS	18	16	3,600	28,800
NM	11	10	2,100	10,500
NC	124	123	4,300	264,450
OK	16	15	3,900	29,250
SC	77	74	4,050	149,850
ТΧ	225	180	2,600	234,000
VA	29	29	4,830	70,035
US	1,645	1,574	3,742	2,945,010

Source: USDA NASS Crop Production Reports

2024 Crop Comparisons

	CORN-NI	COTTON-NI	PEANUTS-RU-NI	SOYBEANS-NI
REVENUE				
PROJECTED YIELD	125	900	4,000	35
FUTURES PRICE	\$4.46	\$0.85	\$0.2500	\$11.41
HARVEST BASIS	\$0.50	-\$0.01	\$0.00	\$0.10
EXPECTED CROP REVENUE	\$620.00	\$756.00	\$1,000.00	\$402.85
COTTONSEED		168.75		
MARKETING	\$0.00	-\$23.06	-\$6.00	\$0.00
CHECKOFF	\$0.00	-\$1.88	-\$4.00	-\$2.01
EXPECTED CROP REVENUE	\$620.00	\$ 899.81	\$ 990.00	\$ 400.84
DIRECT EXPENSE				
SEED	\$71.50	\$99.18	\$130.50	\$50.00
FERTILIZER	\$195.10	\$191.17	\$100.94	\$90.00
CROP PROTECTION	\$70.71	\$111.09	\$340.90	\$74.98
CROP INSURANCE	\$9.00	\$11.00	\$9.00	\$5.00
DRYING OR GINNING	\$23.96	\$108.00	\$25.74	\$1.34
IRRIGATION ENERGY				
CUSTOM HIRE	\$53.75	\$10.00	\$22.00	\$22.25
SUPPLIES	\$0.00	\$17.81	\$0.00	\$0.00
LABOR	\$5.88	\$8.16	\$17.46	\$6.95
MACHINERY OPERATING	32.51	\$71.59	\$79.33	\$36.00
INTEREST ON OP. CAP.	\$18.50	\$25.12	\$29.03	\$11.46
TOTAL DIRECT EXPENSES	\$480.91	\$ 653.12	\$ 754.90	\$ 297.98
RETURN AVAILABLE FOR OVERHEAD, DEBT SERVICE, & MANAGEMENT	\$ 139.09	\$ 246.69	\$ 235.10	\$ 102.86

Taxes Land Rent Insurance Utilities Interest..

By A.R. Smith, Y. Liu, and G.A. Hancock, UGA Exter	may change rapidly. You should enter your own

January 2024

Strip-Tillage	NON-IRRIGATED						
	Cotton	Peanuts	Corn	Soybeans			
EXPECTED YIELD per ACRE	750 lbs	3,400 lbs	85 bu	30 bu			
EXPECTED SEASON AVG PRICE	\$0.80 /lb	\$513 /ton	\$5.00 /bu	\$11.50 /bu			
GROSS RETURN per ACRE	\$600	\$871	\$425	\$345			
VARIABLE COSTS per ACRE							
Seed	115	126	78	66			
Cover Crop Seed*							
BWEP	1						
Fertilizer & Lime**	125	84	140	98			
Chicken Litter							
Chemicals	151	142	38	37			
Custom Application							
Handweeding	18	18					
Scouting	13	13					
Fuel and Lube***	43	50	24	21			
Repairs and Maintenance	41	49	21	17			
Irrigation****							
Labor	18	30	13	11			
Insurance	38	43	35	22			
Land Rent							
Other							
Interest on Operating Capital	25	24	15	12			
Gin & Warehouse (net after cottonseed)	21						
Drying and Cleaning		45	26				
Marketing and Fees		11					
TOTAL VARIABLE COSTS per ACRE	\$607	\$634	\$390	\$283			
RETURN ABOVE VARIABLE COST per ACRE	-\$7	\$237	\$35	<mark>\$62</mark>			

FINANCIAL EFFICIENCY BY CROP

				tur
	CORN-N	COTTON-NI	PEANUTS-RU-NI	SOYBEANS-NI
EXPECTED CROP REVENU	E \$620.00	\$899.81	\$990.00	\$400.84
TOTAL DIRECT EXPENSES	\$480.91	\$653.12	\$754.90	\$297.98
RETURN AVAILABLE FOR OVERHE	AD, \$ 139.09	\$ 246.69	\$ 235.10	\$ 102.86
DEBT SERVICE, & MANAGEM	ENT	φ 240.0 <i>5</i>	<i>y</i> 233.10	ý 102.00
DIRECT EXPENSE TO REVENUE RA	-		76%	74%
OPERATING PROFIT MARGIN	22%	27%	24%	26%
Futures Price Required for:				
40% Operating Profit Margin	\$5.33	•	\$0.29	\$13.05
25% Operating Profit Margin	\$4.59	•	\$0.25	\$11.33
10% Operating Profit Margin	\$3.84	\$0.68	\$0.22	\$9.62
	Revenue P	rotection Cro	op Insurance	Guarantee
		Direct E	vnenses	
		Direct	Apenses	
<u>MPCI RP</u>	<u>CORN-NI</u>	<u>COTTON-NI</u>	PEANUTS-RU-NI	SOYBEANS-NI
<u>IVIPCI RP</u> 65% Coverage	<u>CORN-NI</u> 79%	<u>COTTON-NI</u> 73%	<u>PEANUTS-RU-NI</u> 79%	<u>SOYBEANS-NI</u> 91%

2024 Crop Comparisons

	CORN-IRR	COTTON-IRR	PEANUTS-RU-IRR	SOYBEANS-IRR
REVENUE				
PROJECTED YIELD	210	1250	5,000	65
FUTURES PRICE	\$4.46	\$0.85	\$0.25	\$11.41
HARVEST BASIS	\$0.50	-\$0.01	\$0.00	\$0.10
EXPECTED CROP REVENUE	\$1,041.60	\$1,050.00	\$1,250.00	\$748.15
COTTONSEED		168.75		
MARKETING	\$0.00	-\$32.03	-\$7.50	\$0.00
CHECKOFF	\$0.00	-\$2.60	-\$5.00	-\$3.74
EXPECTED CROP REVENUE	\$1,041.60	\$ 1,184.11	\$ 1,237.50	\$ 744.41
DIRECT EXPENSE				
SEED	\$104.00	\$99.18	\$130.50	\$55.00
FERTILIZER	\$277.10	\$177.67	\$100.94	\$110.00
CROP PROTECTION	\$73.69	\$111.09	\$376.30	\$89.69
CROP INSURANCE	\$5.00	\$8.00	\$8.00	\$5.00
DRYING OR GINNING	\$40.26	\$150.00	\$32.18	\$2.49
IRRIGATION ENERGY	\$54.00	\$27.00	\$27.00	\$27.00
CUSTOM HIRE	\$83.50	\$10.00	\$25.00	\$32.75
SUPPLIES	\$0.00	\$24.74	\$0.00	\$0.00
LABOR	\$5.88	\$8.16	\$1.50	\$6.95
MACHINERY OPERATING	32.51	\$71.59	\$9.70	\$36.00
INTEREST ON OP. CAP.	\$27.04	\$27.50	\$28.44	\$14.60
TOTAL DIRECT EXPENSES	\$702.98	\$ 714.93	\$ 739.56	\$ 379.48
RETURN AVAILABLE FOR OVERHEAD, DEBT SERVICE, & MANAGEMENT	\$ 338.62	\$ 469.18	\$ 497.94	\$ 364.93

Taxes Land Rent Insurance Utilities Interest.. By A.R. Smith, Y. Liu, and G.A. Hancock, UGA Extension Economists, Department of Agricultural & Applied Economics

January 2024

Strip-Tillage

IRRIGATED

			_	
	Cotton	Peanuts	Corn	Soybeans
EXPECTED YIELD per ACRE	1,200 lbs	4,700 lbs	200 bu	60 bu
EXPECTED SEASON AVG PRICE	\$0.80 /lb	\$513 /ton	\$ 5.00 /bu	\$11.50 /bu
GROSS RETURN per ACRE	\$960	\$1,204	\$1,000	\$690
VARIABLE COSTS per ACRE				
Seed	115	126	125	66
Cover Crop Seed*				
BWEP	2			
Fertilizer & Lime**	169	84	361	98
Chicken Litter	L	_		L
Chemicals	152	208	42	53
Custom Application	L	_		
Handweeding	18	18		
Scouting	13	15		
Fuel and Lube***	43	50	24	21
Repairs and Maintenance	41	49	21	17
Irrigation****	79	57	79	45
Labor	18	30	12	11
Insurance	20	31	20	13
Land Rent				
Other				
Interest on Operating Capital	29	29	30	14
Gin & Warehouse (net after cottonseed)	34			
Drying and Cleaning		63	61	
Marketing and Fees		15		
TOTAL VARIABLE COSTS per ACRE	\$732	\$775	\$775	\$337
RETURN ABOVE VARIABLE COST per ACRE	\$228	\$430	\$225	\$353

FINANCIAL EFFICIENCY BY CROP

				tu
	CORN-IRR	COTTON-IRR	PEANUTS-RU-IRR	SOYBEANS-IRR
EXPECTED CROP REVENUE	\$1,041.60	\$1,184.11	\$1,237.50	\$744.41
TOTAL DIRECT EXPENSES	\$702.98	\$714.93	\$739.56	\$379.48
RETURN AVAILABLE FOR OVERHEAD,	\$ 338.62	\$ 469.18	\$ 497.94	\$ 364.93
DEBT SERVICE, & MANAGEMENT		Ŷ 103120	ф чэлэч	<i>ф</i> 004130
DIRECT EXPENSE TO REVENUE RATIO		60%	60%	51%
OPERATING PROFIT MARGIN	33%	40%	40%	49%
Futures Price Required for:				
40% Operating Profit Margin	\$5.33	\$0.84	\$0.2494	\$10.48
25% Operating Profit Margin	\$4.59	\$0.70	\$0.2123	\$8.76
10% Operating Profit Margin	\$3.84	\$0.56	\$0.1752	\$7.04
	-			
	Revenue Pr	otection Cro	op Insurance	Guarantee
	r	_		
		Direct E	xpenses	
<u>MPCI RP</u>	<u>CORN-IRR</u>	COTTON-IRR	PEANUTS-RU-IRR	SOYBEANS-IRR
65% Coverage	91%	92%	101%	133%
70% Coverage	98%	99%	109%	143%
75% Coverage	104%	105%	116%	152%

Crop Insurance Prices

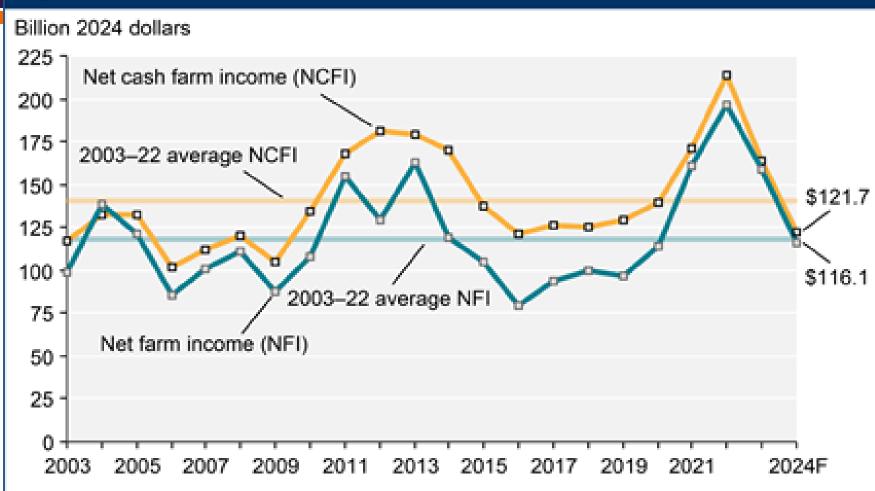
	2017	2018	2019	2020	2021	2022	2023	2024
Corn	\$3.87	\$3.82	\$3.97	\$3.92	\$4.73	\$5.87	\$6.09	\$4.69
Cotton	\$0.73	\$0.75	\$0.74	\$0.70	\$0.80	\$1.02	\$0.85	\$0.80
Grain Sorghum	\$3.81	\$3.78	\$3.95	\$3.75	\$4.30	\$5.73	\$5.87	\$4.77
Peanut, RU	\$395	\$392	\$417	\$398	\$420	\$481	\$535	\$536
Peanut, VA	\$439	\$443	\$442	\$434	\$487	\$534	\$594	\$606
Soybean	\$10.25	\$10.09	\$9.65	\$9.36	\$11.54	\$13.68	\$13.69	\$12.02

Source: USDA RMA Price Discovery (February 28 Closing Date)

10-year comparison Weight Average for Irrigated & Non-Irrigated

	~2014 Cost of Production	2024 Cost of Production	Cost Change
Peanuts	\$919.28	\$1,178.77	\$259.49
Cotton	\$876.28	\$1,086.89	\$210.61
Corn	\$892.68	\$1,112.97	\$220.29
Soybeans	\$498.88	\$601.64	\$102.76

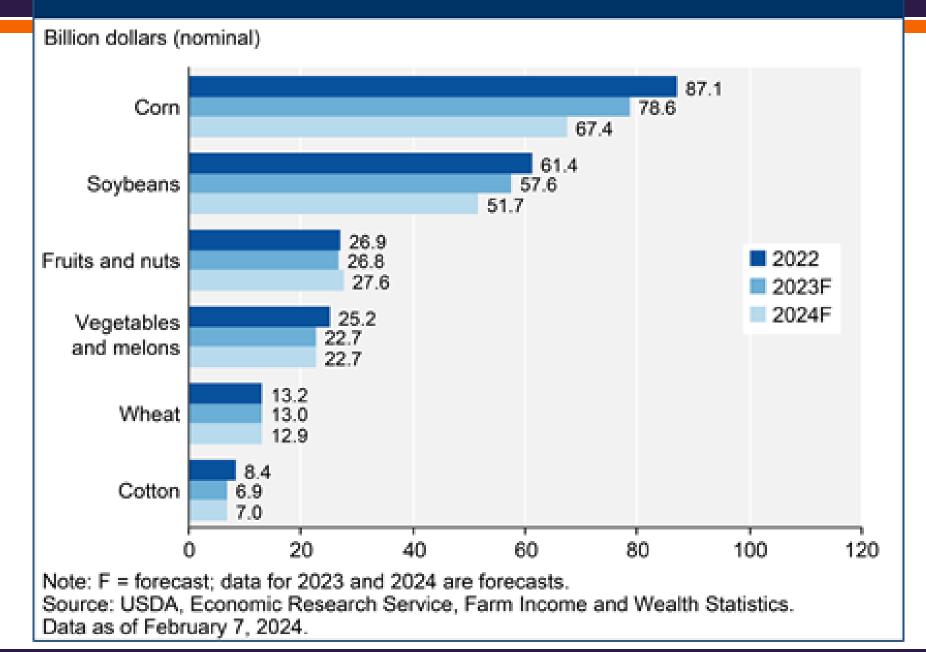
Slide provided by Dr. Marshall Lamb, USDA ARS NPRL


10-year comparison

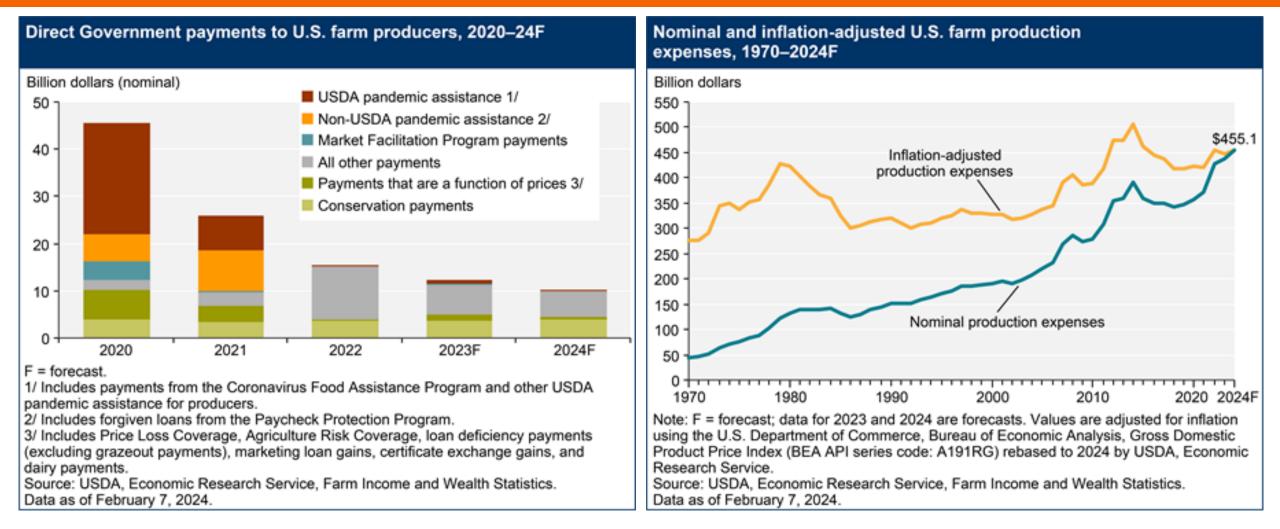
	2014 Cost of Production	2024 Cost of Production	Cost Change	Revenue Change
Peanuts	\$919.28	\$1,178.77	\$259.49	\$165.44
Cotton	\$876.28	\$1,086.89	\$210.61	-\$50.02
Corn	\$892.68	\$1,112.97	\$220.29	\$96.25
Soybeans	\$498.88	\$601.64	\$102.76	\$9.54

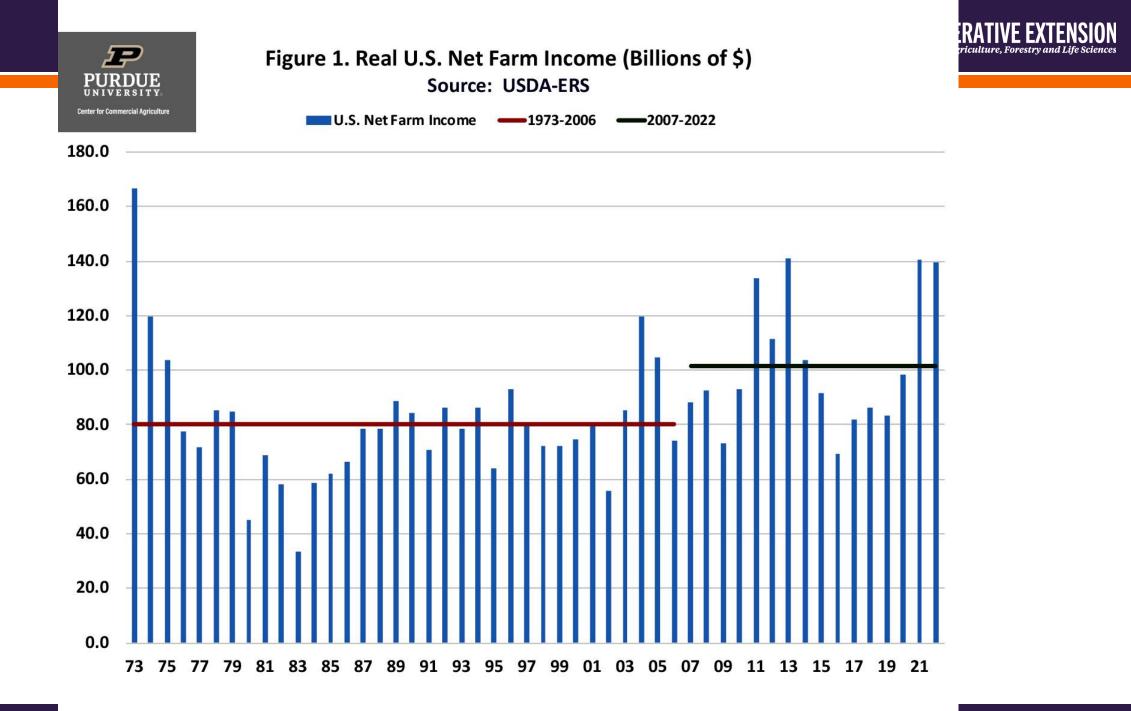
Slide provided by Dr. Marshall Lamb, USDA ARS NPRL

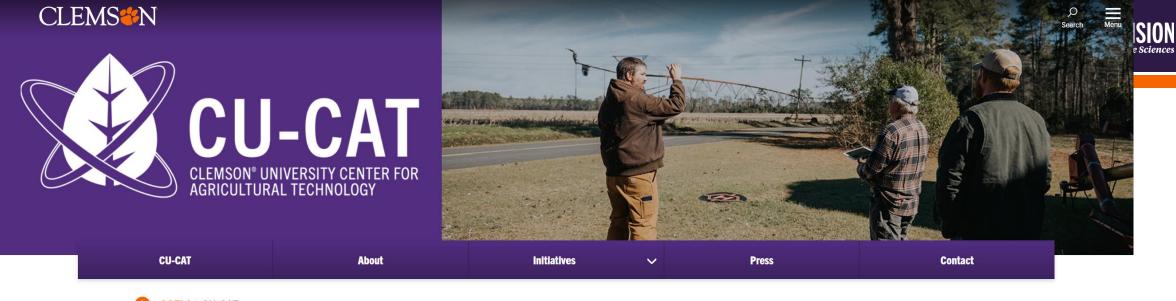
U.S. net farm income and net cash farm income, inflation adjusted, 2003–24F



Note: F = forecast; data for 2023 and 2024 are forecasts. Values are adjusted for inflation using the U.S. Department of Commerce, Bureau of Economic Analysis, Gross Domestic Product Price Index (BEA API series code: A191RG) rebased to 2024 by USDA, Economic Research Service.


Source: USDA, Economic Research Service, Farm Income and Wealth Statistics. Data as of February 7, 2024.


U.S. cash receipts for selected crops, 2022-2024F


of Agriculture, Forestry and Life Science

M / CAFLS / CU-CAT

Clemson University Center for Agricultural Technology

Vision

CU-CAT will be the hub for opportunities for Clemson Ag. Tech researchers and external parties to work together on developing, testing, and training on new technologies.

The pillars of research, education, and outreach are at the center of CU-CAT goals, missions, and desired outcomes and are directly aligned with the Land Grant Mission.

CU-CAT is a Clemson University center for collaboration focused on research, education, and outreach to positively impact farmers through the creation and deployment of new solutions and increased accessibility to existing resources and recommendations.

Precision Agriculture | Farming with Drones

Contact Us

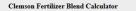
Precision Ag Home Meet Our Team Research & Extension Crops Calculators & Web Apps Extension Guides Our Newsletters In The News Software CU-CAT Calculators & Web Apps

PRECISION AGRICULTURE

Contact Us! 64 Research Road Blackville, SC 29817 803-284-3343

Search Our Site

One of the goals of the Clemson Precision Ag Group is to develop software solutions that can be used to help growers make improved management decisions. The calculators or web apps below are designed to be simple to use, and each one contains instructions for operation.



EMC Calculator

content (EMC) as function of air conditions. Includes EMC forecasting tool for local weather.

Calculate daily and weekly fertilizer rates for drip

fertigation.

Determine injection pump settings for chemigation and fertigation.

HOPPER BOTTOM SEMI-TRAILER MODIFIED FOR IN-SHELL PEANUT DRYING: DESIGN, FABRICATION, AND PERFORMANCE TESTING

Joseph S. McIntyre^{1,*}, Aaron P. Turner², Brennan E. Teddy², Benjamin B. Fogle², Christopher L. Butts¹, Kendall Kirk²

¹ USDA-ARS National Peanut Research Laboratory, Dawson, Georgia, USA.

² College of Agriculture Forestry and Life Sciences, Clemson University, Clemson, South Carolina, USA.

* Correspondence: Joseph.McIntyre@usda.gov, j_mcinty@bellsout.net

HIGHLIGHTS

- Computational fluid dynamics modeling of airflow through the peanut load improved the design process.
- Peanuts dried using the modified hopper bottom semi-trailer passed inspection at 9.1% moisture content in preliminary tests.
- Final moisture gradient in the modified hopper bottom semi-trailer consisted of even layers from front-to-back with moisture increasing with depth.
- Current inspection probe sampling pattern biases inspection moisture measurements lower by not sampling the hopper bottom.

ABSTRACT. Hopper bottom semi-trailers (HBST) modified to dry loads of in-shell peanuts would provide several advantages to peanut producers and peanut processing facility operators. Producers who have HBST for transporting grain would have an additional use for their HBST and would reduce harvest delays during peak harvest times when trailer availability is limited from peanut processors. Additionally, smaller processing facilities would gain the economic advantages of semitrailers without the investment in hydraulic lifts to unload peanut drying van semi-trailers. Before this study, no HBST had been modified to add peanut drving functionality. The objectives of this study were to design, fabricate, and test the performance of drying modifications to a HBST. After review of the functional components needed to dry peanuts and existing structural constrains of the HBST, the components fabricated were an air inlet connection, an enclosed transition space, an air plenum vent, and air exhaust vents on the undersides of the hopper tubs. The number, size, and location of the air exhaust vents were determined using a computational fluid dynamic model. Three test loads of peanuts were dried in the modified HBST during the 2020 peanut harvest season. Measurements were taken at intervals throughout the peanut drying process to assess drying and to monitor air temperature and relative humidity. Results of a test load indicated that the moisture content decreased from 12.9% wet basis (w.b.) to 12.0% w.b. after 8.5 h of drving. Average moisture content was reduced to 11.1% w.b. following an additional 8.6 h without the dryer operating. The sample load official grade moisture content was 9.1% w.b after the rest period. The most important finding was that a moisture gradient persisted in the loads of peanuts after active drying and rest period. The peanuts located at the top of the load had a moisture content of 9% w.b. while those with the highest moisture content of 14% w.b. were at the bottom of the load. The official inspection sampling procedure did not detect the moisture content differences in the test loads. The finding of a persistent moisture gradient will require more investigation and modification of the HBST.

Keywords. Computational Fluid Dynamics, CFD, Design, Drying, Hopper-bottom semi-trailer, Moisture distribution, Moisture gradient, Peanuts, Retrofit.

Submitted for review on 22 September 2021 as manuscript number PRS 14869; approved for publication as a Research Article by Associate Editor Dr. Sammy Sadaka and Community Editor Dr. Sudhagar Mani of the Processing Systems Community of ASABE on 12 April 2022.

Mention of company or trade names is for description only and does not imply endorsement by the USDA. The USDA is an equal opportunity provider and employer.

hree types of trailers are used to transport harvested in-shell peanuts from fields to processing facilities. Prior to 1999, the drying trailer or wagon was used which resembles an open-topped rectangular metal box on wheels. The drying trailer has an elevated perforated floor 20 cm above the bottom of the trailer which forms an air plenum to distribute heated forced air beneath loads of in-shell peanuts to dry them. Drying trailers are usually of two lengths (4.3 and 6.4 m) with load capacities for in-shell peanuts of 4 and 6 Mg, respectively. Drying trailers of both lengths have

Applied Engineering in Agriculture

Evaluate different fertilizer blends for meeting NPK fertilizer application requirements in a cost effective

Acknowledgements

• Thank you to Clemson Extension Specialists and Agents for their contributions to 2024 spring planted crop budgets:

Scott Mickey Dan Anco Jonathan Croft Jay Crouch Charles Davis David Dewitt Bhupinder Farmaha Jeremy Green Trey Buckelew John Mueller Mike Jones Adam Kantrovich Kendall Kirk Mike Marshall Michael Plumblee Francis Reay-Jones

• Thank you to input dealers and reps for providing price information.

THANK YOU

SC AgriWellness - Giving You a Hand When You Need it Most

Free counseling services for farmers and farm families

Call 1-800-968-8143 to be connected with a trained professional

https://www.scfb.org/farmstress

SOUTHERN AG TODAY DAILY

https://southernagtoday.org/

T.E. MOYE

The state

2023 Pre-Harvest Meeting

Scott Monfort – Extension Peanut Agronomist -UGA

Weather conditions pushed back harvest dates

Grading usually begins in September

Many Districts did not begin until October

2023 Crop Overview

Lower grades were reported from all Districts

Lower yields were reported from Producers and Buying Points

South Carolina experienced some freeze damage towards the end of the harvest

2023 Inspector Training

July 27 through August 10

Experienced Inspectors - Classroom and OJT - 292

August 16 through September 11

New Inspectors – Classroom and OJT - 218

2023 Farmers Stock Seasonal Employees

<u>1,057</u> employees during Farmers Stock <u>323,017</u> hours worked from 8-1-23 to 12-06-23 <u>64,389</u> hours overtime worked from 8-1-23 to 12-06-23 <u>387,406</u> total hours worked 8-1-23 to 12-06-23

2023 Georgia Tons per 1007 Certificate

District	Tonnage	1007's Used	Tons per 1007
Pelham	122,310	6,802	18
Blakely	150,695	9,108	17
Colquitt	155,175	9,446	16
Dawson	63,631	6,753	9
Vidalia	168,683	11,973	14
Ocilla	173,839	14,685	12
Ashburn	204,400	14,586	14

2023 Georgia Tons per 1007 Certificate

District	Tonnage	1007's Used	Tons per 1007
Statesboro	194,049	11,627	17
Moultrie	130,230	8,249	16
Tifton	130,523	11,114	12
Bainbridge	82,784	6,077	14
GA Totals	1,576,319		
South Carolina	139,217	7,224	19

2023 National Tonnage Reports

State	Tonnage
Alabama	290,310
Arkansas	132,109
Florida	194,331
Georgia	1,576,321
Mississippi	24,923
Missouri	28,249

2023 National Tonnage Reports

State	Tonnage
New Mexico	10,391
North Carolina	258,393
Oklahoma	20,892
South Carolina	139,217
Texas	229,415
Virginia	62,291

Grand Total National Tonnage

2,966,841

Automated Tube

In shell Moisture Machine

Probe Study